“Some only appear crazy. Others are as mad as a bag of cats”

unnamed

Stalin’s more eccentric scientists are the subject of this blogpost for Faber & Faber.

Stalin and the Scientists describes what happened when, early in the twentieth century, a handful of impoverished and under-employed graduates, professors and entrepreneurs, collectors and charlatans, bound themselves to a failing government to create a world superpower. Envied and obsessed over by Joseph Stalin — ‘the Great Scientist’ himself — scientists in disciplines from physics to psychology managed to steer his empire through famine, drought, soil exhaustion, war, rampant alcoholism, a huge orphan problem, epidemics and an average life expectancy of thirty years. Hardly any of them are well known outside Russia, yet their work shaped global progress for well over a century.

Cold War propaganda cast Soviet science as an eccentric, gimcrack, often sinister enterprise. And, to my secret delight, not every wild story proved to be a fabrication. Indeed, a heartening amount of the smoke shrouding Soviet scientific achievement can be traced back to intellectual arson attacks of one sort or another.

I’ll leave it to the book to explain why Stalin’s scientists deserve our admiration and respect. This is the internet, so let’s have some fun. Here, in no particular order, are my my top five scientific eccentrics. Some only appear crazy; others have had craziness thrust upon them by hostile commentators. Still others were as mad as a bag of cats.

1. Ilya Ivanov
Ilya Ivanov, the animal breeding expert who tried to mate humans with chimpanzees

By the time of the 1917 revolution, Ilya Ivanov was already an international celebrity. His pioneering artificial insemination techniques were transforming world agriculture. However, once he lost his Tsarist patrons, he had to find a research programme that would catch the eye of the new government’s Commissariat of Education. What he came up with was certainly compelling: a proposal to cross-breed humans and chimpanzees.

We now know there are immunological difficulties preventing such a cross, but the basic idea is not at all crazy, and Ivanov got funding from Paris and America to travel to Guinea to further the study.

Practically and ethically the venture was a disaster. Arriving at the primate centre in Kindia, Ivanov discovered that its staff were killing and maiming far more primates than they ever managed to capture. To make matters worse, after a series of gruesome and rapine attempts to impregnate chimpanzees with human sperm, Ivanov decided it might be easier to turn the experiment on its head and fertilise African women with primate sperm. Unfortunately, he failed to tell them what he was doing.

Ivanov was got rid of during the Purges of the late 1930s thanks to a denunciation by an ambitious colleague, but his legacy survives. The primate sanctuary he founded in Sukhumi by the Black Sea provided primates for the Soviet space programme. Meanwhile the local tourist industry makes the most of, and indeed maintains, persistent rumours that the local woods are haunted by seven-foot-tall Stalinist ape-men.

2. Alexander Bogdanov
whose Mars-set science fiction laid the groundwork for the Soviet Union’s first blood transfusion service — and who died of blood poisoning

Alexander Alexandrovich Bogdanov, co-founder of the Bolshevik movement, lost interest in politics, even as control came within his grasp, because he wanted more time for his writing.

In his novels Red Star and Engineer Menni, blood exchanges among his Martian protagonists level out their individual and sexual differences and extend their lifespan through the inheritance of acquired characteristics.

These scientific fantasies took an experimental turn in 1921 during a trade junket to London when he happened across Blood Transfusion, a book by Geoffrey Keynes (younger brother of the economist). Two years of private experiments followed, culminating in an appointment with the Communist Party’s general secretary, Joseph Stalin. Bogdanov was quickly installed as head of a new ‘scientific research institute of blood transfusion’.

Blood, Bogdanov claimed, was a universal tissue that unified all other organs, tissues and cells. Transfusions offered the client better sleep, a fresher complexion, a change in eyeglass prescriptions, and greater resistance to fatigue. On 24 March 1928 he conducted a typically Martian experiment, mutually transfusing blood with a male student, suffered a massive transfusion reaction and died two weeks later at the age of fifty-four.

Bogdanov the scientist never offered up his studies to the review of his peers. In fact he never wrote any actual science at all, just propaganda for the popular press. In this, he resembled no-one so much as the notorious charlatan (and Stalin’s poster boy) Trofim Lysenko. I reckon it was his example made Trofim Lysenko politically possible.

3. Trofim Lysenko
Stalin’s poster-boy, who believed plants sacrifice themselves for their strongest neighbour — and was given the job of reforesting European Russia.

Practical, working-class, ambitious and working for the common good, the agrobiologist Trofim Lysenko was the very model of the new Soviet scientist. Rather than studying ‘the hairy legs of flies’, ran one Pravda profile in August 1927, this sober young man ‘went to the root of things,’ solving practical problems by a few calculations ‘on a little old piece of paper’.

As he studied how different varieties of the same crop responded to being planted at different times, he never actually touched any mathematics, relying instead on crude theories ‘proved’ by arbitrary examples.

Lysenko wanted, above all else, to be an original. An otherwise enthusiastic official report warned that he was an ‘extremely egotistical person, deeming himself to be a new Messiah of biological science.’ Unable to understand the new-fangled genetics, he did everything he could to banish it from biology. In its place he championed ‘vernalisation’, a planting technique that failed dismally to increase yields. Undeterred, he went on to theorise about species formation, and advised the government on everything, from how to plant oak trees across the entire Soviet Union to how to increase the butterfat content of milk. The practical results of his advices were uniformly disastrous and yet, through a combination of belligerence, working-class credentials, and a phenomenal amount of luck, he remained the poster-boy of Soviet agriculture right up until the fall of Khrushchev in 1964.

Nor is his ghost quite laid to rest. A couple of politically motivated historians are even now attempting to recast Lysenko as a cruelly sidelined pioneer of epigenetics (the study of how the environment regulates gene expression). This is a cruel irony, since Soviet Russia really was the birthplace of epigenetics! And it was Lysenko’s self-serving campaigns that saw that every single worker in that field was sacked and ruined.

4. Olga Lepeshinskaya
who screened in reverse films of rotting eggs to prove her theories about cell development — and won a Stalin Prize

Olga Lepeshinskaya, a personal friend of Lenin and his wife, was terrifyingly well-connected and not remotely intimidated by power. On a personal level, she was charming. She fiercely opposed anti-semitism, and had dedicated her personal life to the orphan problem, bringing up at least half a dozen children as her own.

As a scientist, however, she was a disaster. She once announced to the Academic Council of the Institute of Morphology that soda baths could rejuvenate the old and preserve the youth of the young. A couple of weeks later Moscow completely sold out of baking soda.

In her old age, Lepeshinskaya became entranced by the mystical concept of the ‘vital substance’, and recruited her extended family to work in her ‘laboratory’, pounding beetroot seeds in a pestle to demonstrate that any part of the seed could germinate. She even claimed to have filmed living cells emerge from noncellular materials. Lysenko hailed Lepeshinskaya’s discovery as the basis for a new theory of species formation, and in May 1950 Alexander Oparin, head of the Academy of Sciences’ biology department, invited Olga Lepeshinskaya to receive her Stalin Prize.

It was all a fraud, of course: she had been filming the death and decomposition of cells, then running her film backwards through the projector. Lepeshinskaya made a splendid myth. The subject of poetry. The heroine of countless plays. In school and university textbooks she was hailed as the author of the greatest biological discovery of all time.

5. Joseph Stalin
whose obsession with growing lemons in Siberia became his only hobby

Stalin, typically for his day, believed in the inheritance of acquired characteristics – that a giraffe that has to stretch to reach high leaves will have long-necked children. He assumed that, given the right conditions, living things were malleable, and as the years went by this obsession grew. In 1946 he became especially keen on lemons, not only encouraging their growth in coastal Georgia, where they fared quite well, but also in the Crimea, where winter frosts destroyed them.

Changing the nature of lemons became Stalin’s sole hobby. At his dachas near Moscow and in the south, large greenhouses were erected so that he could enter them directly from the house, day or night. Pruning shrubs and plants was his only physical exercise.

Stalin shared with his fellow Bolsheviks the idea that they had to be philosophers in order to deserve their mandate. He schooled the USSR’s most prominent philosopher, Georgy Aleksandrov, on Hegel’s role in the history of Marxism. He told the composer Dmitry Shostakovich how to change the orchestration for the new national anthem. He commissioned the celebrated war poet Konstantin Simonov to write a play about a famous medical controversy, treated him to an hour of literary criticism, and then rewrote the closing scenes himself. Sergei Eisenstein and his scriptwriter on Ivan the Terrible Part Two were treated to a filmmaking masterclass. And in 1950, while he was negotiating a pact with the People’s Republic of China, and discussing how to invade South Korea with Kim Il Sung, Stalin was also writing a combative article about linguistics, and meeting with economists multiple times to discuss a textbook.

Stalin’s paranoia eventually pushed him into pronouncements that were more and more peculiar. Unable to trust even himself, it came to Joseph Stalin that people were, or ought to be, completely readable from first to last. All it needed was an entirely verbal theory of mind. ‘There is nothing in the human being which cannot be verbalised,’ he asserted, in 1949. ‘What a person hides from himself he hides from society. There is nothing in the Soviet society that is not expressed in words. There are no naked thoughts. There exists nothing at all except words.’

For Stalin, in the end, even a person’s most inner world was readable – because if it wasn’t, then it couldn’t possibly exist.

 

 

Just how much does the world follow laws?

zebra

How the Zebra Got its Stripes and Other Darwinian Just So Stories by Léo Grasset
The Serengeti Rules: The quest to discover how life works and why it matters by Sean B. Carroll
Lysenko’s Ghost: Epigenetics and Russia by Loren Graham
The Great Derangement: Climate change and the unthinkable by Amitav Ghosh
reviewed for New Scientist, 15 October 2016

JUST how much does the world follow laws? The human mind, it seems, may not be the ideal toolkit with which to craft an answer. To understand the world at all, we have to predict likely events and so we have a lot invested in spotting rules, even when they are not really there.

Such demands have also shaped more specialised parts of culture. The history of the sciences is one of constant struggle between the accumulation of observations and their abstraction into natural laws. The temptation (especially for physicists) is to assume these laws are real: a bedrock underpinning the messy, observable world. Life scientists, on the other hand, can afford no such assumption. Their field is constantly on the move, a plaything of time and historical contingency. If there is a lawfulness to living things, few plants and animals seem to be aware of it.

Consider, for example, the charming “just so” stories in French biologist and YouTuber Léo Grasset’s book of short essays, How the Zebra Got its Stripes. Now and again Grasset finds order and coherence in the natural world. His cost-benefit analysis of how animal communities make decisions, contrasting “autocracy” and “democracy”, is a fine example of lawfulness in action.

But Grasset is also sharply aware of those points where the cause-and-effect logic of scientific description cannot show the whole picture. There are, for instance, four really good ways of explaining how the zebra got its stripes, and those stripes arose probably for all those reasons, along with a couple of dozen others whose mechanisms are lost to evolutionary history.

And Grasset has even more fun describing the occasions when, frankly, nature goes nuts. Take the female hyena, for example, which has to give birth through a “pseudo-penis”. As a result, 15 per cent of mothers die after their first labour and 60 per cent of cubs die at birth. If this were a “just so” story, it would be a decidedly off-colour one.

The tussle between observation and abstraction in biology has a fascinating, fraught and sometimes violent history. In Europe at the birth of the 20th century, biology was still a descriptive science. Life presented, German molecular biologist Gunther Stent observed, “a near infinitude of particulars which have to be sorted out case by case”. Purely descriptive approaches had exhausted their usefulness and new, experimental approaches were developed: genetics, cytology, protozoology, hydrobiology, endocrinology, experimental embryology – even animal psychology. And with the elucidation of underlying biological process came the illusion of control.

In 1917, even as Vladimir Lenin was preparing to seize power in Russia, the botanist Nikolai Vavilov was lecturing to his class at the Saratov Agricultural Institute, outlining the task before them as “the planned and rational utilisation of the plant resources of the terrestrial globe”.

Predicting that the young science of genetics would give the next generation the ability “to sculpt organic forms at will”, Vavilov asserted that “biological synthesis is becoming as much a reality as chemical”.

The consequences of this kind of boosterism are laid bare in Lysenko’s Ghost by the veteran historian of Soviet science Loren Graham. He reminds us what happened when the tentatively defined scientific “laws” of plant physiology were wielded as policy instruments by a desperate and resource-strapped government.

Within the Soviet Union, dogmatic views on agrobiology led to disastrous agricultural reforms, and no amount of modern, politically motivated revisionism (the especial target of Graham’s book) can make those efforts seem more rational, or their aftermath less catastrophic.

In modern times, thankfully, a naive belief in nature’s lawfulness, reflected in lazy and increasingly outmoded expressions such as “the balance of nature”, is giving way to a more nuanced, self-aware, even tragic view of the living world. The Serengeti Rules, Sean B. Carroll’s otherwise triumphant account of how physiology and ecology turned out to share some of the same mathematics, does not shy away from the fact that the “rules” he talks about are really just arguments from analogy.

“If there is a lawfulness to living things, few plants and animals seem to be aware of it”
Some notable conservation triumphs have led from the discovery that “just as there are molecular rules that regulate the numbers of different kinds of molecules and cells in the body, there are ecological rules that regulate the numbers and kinds of animals and plants in a given place”.

For example, in Gorongosa National Park, Mozambique, in 2000, there were fewer than 1000 elephants, hippos, wildebeest, waterbuck, zebras, eland, buffalo, hartebeest and sable antelopes combined. Today, with the reintroduction of key predators, there are almost 40,000 animals, including 535 elephants and 436 hippos. And several of the populations are increasing by more than 20 per cent a year.

But Carroll is understandably flummoxed when it comes to explaining how those rules might apply to us. “How can we possibly hope that 7 billion people, in more than 190 countries, rich and poor, with so many different political and religious beliefs, might begin to act in ways for the long-term good of everyone?” he asks. How indeed: humans’ capacity for cultural transmission renders every Serengeti rule moot, along with the Serengeti itself – and a “law of nature” that does not include its dominant species is not really a law at all.

Of course, it is not just the sciences that have laws: the humanities and the arts do too. In The Great Derangement, a book that began as four lectures presented at the University of Chicago last year, the novelist Amitav Ghosh considers the laws of his own practice. The vast majority of novels, he explains, are realistic. In other words, the novel arose to reflect the kind of regularised life that gave you time to read novels – a regularity achieved through the availability of reliable, cheap energy: first, coal and steam, and later, oil.

No wonder, then, that “in the literary imagination climate change was somehow akin to extraterrestrials or interplanetary travel”. Ghosh is keenly aware of and impressively well informed about climate change: in 1978, he was nearly killed in an unprecedentedly ferocious tornado that ripped through northern Delhi, leaving 30 dead and 700 injured. Yet he has never been able to work this story into his “realist” fiction. His hands are tied: he is trapped in “the grid of literary forms and conventions that came to shape the narrative imagination in precisely that period when the accumulation of carbon in the atmosphere was rewriting the destiny of the Earth”.

The exciting and frightening thing about Ghosh’s argument is how he traces the novel’s narrow compass back to popular and influential scientific ideas – ideas that championed uniform and gradual processes over cataclysms and catastrophes.

One big complaint about science – that it kills wonder – is the same criticism Ghosh levels at the novel: that it bequeaths us “a world of few surprises, fewer adventures, and no miracles at all”. Lawfulness in biology is rather like realism in fiction: it is a convention so useful that we forget that it is a convention.

But, if anthropogenic climate change and the gathering sixth mass extinction event have taught us anything, it is that the world is wilder than the laws we are used to would predict. Indeed, if the world really were in a novel – or even in a book of popular science – no one would believe it.