Microphotography

The eye of a Metapocyrtus subquadrulifer beetle

Covering the Nikon Small World competition for New Scientist,11 October 2018

Microphotography has come along way since Nikon staged the first Nikon Small World competition in 1974. Finalists in 2018 harnessed a dizzying array of photographic techniques to achieve the spectacular results displayed here. A full-colour calendar of the winners is in the works, and people in the US can look forward to a national tour of the top images.

Yousef Al Habshi from the United Arab Emirates won first prize with the image above of the compound eyes and surrounding greenish scales of a weevil, Metapocyrtus subquadrulifer.  It was made by stacking together 129 micrographs — photographs taken through a microscope. “I feel like I’m photographing a collection of jewelry,” said Al Habshi of his work with these beautiful Philippine beetles, which are more usually considered agricultural nuisances and targets for pest control.

fern sorus — structures that produce and contain spores

Rogelio Moreno from Panama won second prize for capturing the spore-containing structures of a fern (above). He used a technique called autoflorescence, in which ultraviolet light is used to pick out individual structures. Spores develop within a sporangium, and Moreno has successfully distinguished a group of these containers from the clustered structure called the sorus. Sporangiums at different stages of development show up in different colours.

Spittlebug nymph in its bubble house

Saulius Gugis from the USA photographed this spittle-bug in the process of making its “bubble-house”. The foamy structure helps the insect hide from predators, insulate itself and stay moist. The photograph won third prize.

A spider embryo with the surface stained

Other highlights from the prize include a portrayal of the first stirrings of arachnid life by Tessa Montague at Harvard University. The surface of this spider embryo (Parasteatoda tepidariorum) is picked out in pink. The cell nuclei are blue and other cell structures are green.

The mango seed weevil

Looking for all the world like an extra from Luc Besson’s sci-fi film The Fifth Element, this magnificent mango seed weevil (Sternochetus mangiferae) earned Pia Scanlon, a researcher for the Government of Western Australia, a place among the finalists.

Surreal Science at the Whitechapel: Object lessons

Visiting Surreal Science at London’s Whitechapel Gallery for New Scientist, 8 September 2018

WHENEVER the artist Salvatore Arancio visits a new city, he heads for the nearest natural history museum. He goes partly for research: his eclectic output, spanning photography and ceramics, explores how we categorise and try to understand natural and geological processes.

In the main, though, Arancio wants to be overwhelmed. “A lot of these collections are so vast, after a while you find yourself wandering around in a spaced-out state, inventing mental landscapes and narratives. It’s that feeling I’m trying to evoke here,” he tells me as we watch the assembly of his new show, Surreal Science, a collaboration with art patron George Loudon.

Loudon famously collected work by Damien Hirst and his generation years before they became global celebrities – until the day a canvas he bought wouldn’t fit through his door.

At that point, Loudon turned to the books, images and models (in clay, felt, glass and plaster) that educated 19th-century science students. “Looking back, I can see the move was a natural one,” Loudon says. “Artists like Hirst and Mark Dion were exploring the way we catalogue and represent the world. Around the time that collection felt complete I was travelling to South America a lot, and I became interested in the scientific discoveries made there – by Charles Darwin, Alexander von Humboldt, Alfred Russel Wallace and Henry Walter Bates.”

This isn’t a collection in the sense that there is any demarcation to it. “It’s somebody’s personal eye that chooses this over that,” says Loudon. Nevertheless, a clear theme has emerged: how the explosion of science in the 19th century meant that scientists had to turn artist to produce educational materials for students. And, when the burden became too much, how companies of artisans emerged to satisfy the demand.

Loudon’s collection has been shown before, at the Manchester Museum last year, but Surreal Science is a different enterprise. The objects, designed to be handled, are exhibited here on open shelves, bringing the visitor tantalisingly close to the work in a very un-museumlike manner. Needless to say this makes for a nerve-racking build.

This is the moment of truth for Arancio, who had to plan this installation-cum-exhibition armed only with photographs of Loudon’s collection and sheets of careful measurements. It is the first chance he has had to see his arrangements realised in situ.

The ceramic pieces he has created provide a foil for the items in Loudon’s collection. An arrangement of ceramic flowers above an anatomical cut-away torso suggests a mandrake-like marriage of vegetable and human. Next to it is a discomforting juxtaposition of plaster models of teeth and wax copies of lemons. Models of cell division are easily mistaken for geodes. Again and again, Arancio’s ceramic pieces – pools, leaves, corals and tubular spider forms – mislead the eye, so we miscatalogue what we see.

“I tried to create pieces that carried George’s objects off into some kind of fantastic realm,” says Arancio. Even before key elements of the show are installed –proper lighting, a looping educational film from 1935 and an experimental soundtrack by The Focus Group – it is clear that the experiment has succeeded.

For Loudon, it is a vindication of his decision to collect objects that until recently weren’t recognised by the fine-art market. He moves from shelf to shelf, past exquisite Blaschka glass slugs, felt fungi, a meticulously repaired elephant bird egg. “Now these objects have lost their original purpose, we can look at them as objects of beauty,” he says. “I’m not claiming that this is art forever. I am saying it is art for today.”

Just how much does the world follow laws?

zebra

How the Zebra Got its Stripes and Other Darwinian Just So Stories by Léo Grasset
The Serengeti Rules: The quest to discover how life works and why it matters by Sean B. Carroll
Lysenko’s Ghost: Epigenetics and Russia by Loren Graham
The Great Derangement: Climate change and the unthinkable by Amitav Ghosh
reviewed for New Scientist, 15 October 2016

JUST how much does the world follow laws? The human mind, it seems, may not be the ideal toolkit with which to craft an answer. To understand the world at all, we have to predict likely events and so we have a lot invested in spotting rules, even when they are not really there.

Such demands have also shaped more specialised parts of culture. The history of the sciences is one of constant struggle between the accumulation of observations and their abstraction into natural laws. The temptation (especially for physicists) is to assume these laws are real: a bedrock underpinning the messy, observable world. Life scientists, on the other hand, can afford no such assumption. Their field is constantly on the move, a plaything of time and historical contingency. If there is a lawfulness to living things, few plants and animals seem to be aware of it.

Consider, for example, the charming “just so” stories in French biologist and YouTuber Léo Grasset’s book of short essays, How the Zebra Got its Stripes. Now and again Grasset finds order and coherence in the natural world. His cost-benefit analysis of how animal communities make decisions, contrasting “autocracy” and “democracy”, is a fine example of lawfulness in action.

But Grasset is also sharply aware of those points where the cause-and-effect logic of scientific description cannot show the whole picture. There are, for instance, four really good ways of explaining how the zebra got its stripes, and those stripes arose probably for all those reasons, along with a couple of dozen others whose mechanisms are lost to evolutionary history.

And Grasset has even more fun describing the occasions when, frankly, nature goes nuts. Take the female hyena, for example, which has to give birth through a “pseudo-penis”. As a result, 15 per cent of mothers die after their first labour and 60 per cent of cubs die at birth. If this were a “just so” story, it would be a decidedly off-colour one.

The tussle between observation and abstraction in biology has a fascinating, fraught and sometimes violent history. In Europe at the birth of the 20th century, biology was still a descriptive science. Life presented, German molecular biologist Gunther Stent observed, “a near infinitude of particulars which have to be sorted out case by case”. Purely descriptive approaches had exhausted their usefulness and new, experimental approaches were developed: genetics, cytology, protozoology, hydrobiology, endocrinology, experimental embryology – even animal psychology. And with the elucidation of underlying biological process came the illusion of control.

In 1917, even as Vladimir Lenin was preparing to seize power in Russia, the botanist Nikolai Vavilov was lecturing to his class at the Saratov Agricultural Institute, outlining the task before them as “the planned and rational utilisation of the plant resources of the terrestrial globe”.

Predicting that the young science of genetics would give the next generation the ability “to sculpt organic forms at will”, Vavilov asserted that “biological synthesis is becoming as much a reality as chemical”.

The consequences of this kind of boosterism are laid bare in Lysenko’s Ghost by the veteran historian of Soviet science Loren Graham. He reminds us what happened when the tentatively defined scientific “laws” of plant physiology were wielded as policy instruments by a desperate and resource-strapped government.

Within the Soviet Union, dogmatic views on agrobiology led to disastrous agricultural reforms, and no amount of modern, politically motivated revisionism (the especial target of Graham’s book) can make those efforts seem more rational, or their aftermath less catastrophic.

In modern times, thankfully, a naive belief in nature’s lawfulness, reflected in lazy and increasingly outmoded expressions such as “the balance of nature”, is giving way to a more nuanced, self-aware, even tragic view of the living world. The Serengeti Rules, Sean B. Carroll’s otherwise triumphant account of how physiology and ecology turned out to share some of the same mathematics, does not shy away from the fact that the “rules” he talks about are really just arguments from analogy.

“If there is a lawfulness to living things, few plants and animals seem to be aware of it”
Some notable conservation triumphs have led from the discovery that “just as there are molecular rules that regulate the numbers of different kinds of molecules and cells in the body, there are ecological rules that regulate the numbers and kinds of animals and plants in a given place”.

For example, in Gorongosa National Park, Mozambique, in 2000, there were fewer than 1000 elephants, hippos, wildebeest, waterbuck, zebras, eland, buffalo, hartebeest and sable antelopes combined. Today, with the reintroduction of key predators, there are almost 40,000 animals, including 535 elephants and 436 hippos. And several of the populations are increasing by more than 20 per cent a year.

But Carroll is understandably flummoxed when it comes to explaining how those rules might apply to us. “How can we possibly hope that 7 billion people, in more than 190 countries, rich and poor, with so many different political and religious beliefs, might begin to act in ways for the long-term good of everyone?” he asks. How indeed: humans’ capacity for cultural transmission renders every Serengeti rule moot, along with the Serengeti itself – and a “law of nature” that does not include its dominant species is not really a law at all.

Of course, it is not just the sciences that have laws: the humanities and the arts do too. In The Great Derangement, a book that began as four lectures presented at the University of Chicago last year, the novelist Amitav Ghosh considers the laws of his own practice. The vast majority of novels, he explains, are realistic. In other words, the novel arose to reflect the kind of regularised life that gave you time to read novels – a regularity achieved through the availability of reliable, cheap energy: first, coal and steam, and later, oil.

No wonder, then, that “in the literary imagination climate change was somehow akin to extraterrestrials or interplanetary travel”. Ghosh is keenly aware of and impressively well informed about climate change: in 1978, he was nearly killed in an unprecedentedly ferocious tornado that ripped through northern Delhi, leaving 30 dead and 700 injured. Yet he has never been able to work this story into his “realist” fiction. His hands are tied: he is trapped in “the grid of literary forms and conventions that came to shape the narrative imagination in precisely that period when the accumulation of carbon in the atmosphere was rewriting the destiny of the Earth”.

The exciting and frightening thing about Ghosh’s argument is how he traces the novel’s narrow compass back to popular and influential scientific ideas – ideas that championed uniform and gradual processes over cataclysms and catastrophes.

One big complaint about science – that it kills wonder – is the same criticism Ghosh levels at the novel: that it bequeaths us “a world of few surprises, fewer adventures, and no miracles at all”. Lawfulness in biology is rather like realism in fiction: it is a convention so useful that we forget that it is a convention.

But, if anthropogenic climate change and the gathering sixth mass extinction event have taught us anything, it is that the world is wilder than the laws we are used to would predict. Indeed, if the world really were in a novel – or even in a book of popular science – no one would believe it.

Glimpses of the Wonderful

Glimpses of the Wonderful by Anne Thwaite, reviewed for New Scientist, 2 November 2002

WHY do we study the natural world? Today, we might answer: to uncover life’s underlying principles. In the mid-19th century, those underlying principles were thought to be already established: life was a Creation of God’s.

Ann Thwaite, a literary biographer best known for her lives of Edmund Gosse and A. A. Milne, forays into the history of science with this life of Edmund Gosse’s father, the naturalist Philip Henry Gosse.

Thwaite shows that Gosse’s believed that “the gratification of scientific curiosity is worse than useless if we ignore God”. After all, what is science for, if not veneration? What Gosse never could do was abandon his belief in the revealed Word and take up the un-anthropomorphic “search for underlying principles” which would become the defining feature of modern science.

A self-styled Puritan who famously called Christmas pudding “the devil’s sweetmeat”, Gosse was also the finest naturalist of his age. He enjoyed a lifelong, friendly correspondence with Charles Darwin, and popularised the science of his day with rigour and intelligence. For most of us, though, Gosse is best known through his son’s memoir Father and Son – a poignant account of Edmund’s father’s “strange severities and eccentric prohibitions”, to which Thwaite provides a robust response.

Dogmatic belief shields us from the inevitability of death. Gosse, born into a millennial age, believed that Christ would return before he died. He spent the last hours of his life in a state of heart-rending and terrible dejection. Who can say they do not share Gosse’s terrible fear of death? His unenviable distinction was to hold fast to conventional comforts in a revolutionary age.

Thwaite weaves together Gosse’s professional studies and personal convictions, not into some dead synthesis, but into a story of a man caught in the toils of the scientific establishment as it re-geared itself for the modern age. Omphalos, Gosse’s great – and greatly lampooned – attempt to marry creationist dogma with the evolutionary record, is the work by which he is best known. It is a measure of Thwaite’s intellectual grasp that we understand how well considered that book really is, and at the same time how unworthy of him. Better that we remember Gosse as a friend remembered him: a figure to embody all the contradictions of his day, “plunging into a pool in full sacerdotal black, after a sea anemone”.