Liquid Crystal Display: Snap judgements

Lead_Waad-AlBawardi,-The-Hidden-Life-of-Crystals,

Visiting Liquid Crystal Display at SITE Gallery, Sheffield, for New Scientist, 31 October 2018

Untitled Gallery was founded in Sheffield in 1979. It specialised in photography. In 1996 it was renamed Site Gallery and steadily expanded its remit to cover the intersection between science and art. Nearly 30 years and a £1.7million refit later, Site Gallery is the new poster child of Sheffield’s Cultural Industries Quarter, with an exhibition, Liquid Crystal Display, that cleverly salutes its photographic past.

Most shows about art value the results over the ingredients. The picture matters more than the paint. The statue matters more than the stone. Exhibitions about photography give rather more space to process because photography’s ingredients are so involved and fascinating.

Liquid Crystal Display follows this photographic logic to its end. This is a show about the beauty, weight and messiness of materials we notice only when they’ve stopped working. It’s about the beauty created by a broken smartphone screen, a corroded battery, a cracked lens.

Site Gallery’s new exhibition – a cabinet of curiosities if ever there was one – collides science and art, the natural and the manufactured, the old and the new. It puts the exquisite sketches of 19th-century Scottish chemist and photographer Mungo Ponton (detailing his observations of how crystals polarise light), next to their nearest contemporary equivalent: microscopic studies (pictured) of liquid crystals caught in the process of self-organisation by Waad AlBawardi, a Saudi molecular biologist who’s currently in Edinburgh, researching the structure of DNA organisation inside cells.

This provocative pairing of the relatively simple and the manifestly complex is repeated several times. Near a selection of crystals from John Ruskin’s mineral collection sit the buckets, burners and batteries of Jonathan Kemp, Martin Howse and Ryan Jordan’s The Crystal World project, a tabletop installation recording their hot, smelly, borderline-hazardous effort to extract the original minerals from bits of scavenged computers. Curated by Laura Sillars, assisted by Site Gallery’s own Angelica Sule, Liquid Crystal Display reveals the material, mineral reality behind our oh-so-weightless holographic world of digital imagery. “Liquid crystals polarise light, produce colour and yet, as a material form, recede into the background of technology,” Sillars wrote in the catalogue to this show.

JulesLister_24Sept2018Large_4024-Large

This awareness is not new, of course. In the 1960s, liquid crystals were being burned on overhead projectors to create psychedelic light shows. J G Ballard’s novel The Crystal World (1966) concocted a paranoid vision of a world and a civilisation returned (literally) to its mineral roots. That story receives a handsome homage here from the scifi-obsessed Norwegian artist Anne Lislegaard, whose stark monochrome animation (above) turns the sharp shadows and silhouettes cast by contemporary domestic furniture into insidious crystalline growths.

Arrayed within Anna Barham’s peculiar hexagonal cabinetwork, a gigantic piece of display furniture that is itself an artwork, the pictures, objects, films and devices in Liquid Crystal Display speak to pressing topical worries – resource depletion, environmental degradation, the creeping uncanny of digital experience – while at the same time evoking a peculiar nostalgia for our photochemical past.

The exhibition lacks one large signature object against which visitors can take selfies. A peculiar omission in a show that’s relaunching a gallery. And a bit of a shame for an exhibition that, in its left-field way, has handsomely captured the philosophical essence of photography.

Microphotography

The eye of a Metapocyrtus subquadrulifer beetle

Covering the Nikon Small World competition for New Scientist,11 October 2018

Microphotography has come along way since Nikon staged the first Nikon Small World competition in 1974. Finalists in 2018 harnessed a dizzying array of photographic techniques to achieve the spectacular results displayed here. A full-colour calendar of the winners is in the works, and people in the US can look forward to a national tour of the top images.

Yousef Al Habshi from the United Arab Emirates won first prize with the image above of the compound eyes and surrounding greenish scales of a weevil, Metapocyrtus subquadrulifer.  It was made by stacking together 129 micrographs — photographs taken through a microscope. “I feel like I’m photographing a collection of jewelry,” said Al Habshi of his work with these beautiful Philippine beetles, which are more usually considered agricultural nuisances and targets for pest control.

fern sorus — structures that produce and contain spores

Rogelio Moreno from Panama won second prize for capturing the spore-containing structures of a fern (above). He used a technique called autoflorescence, in which ultraviolet light is used to pick out individual structures. Spores develop within a sporangium, and Moreno has successfully distinguished a group of these containers from the clustered structure called the sorus. Sporangiums at different stages of development show up in different colours.

Spittlebug nymph in its bubble house

Saulius Gugis from the USA photographed this spittle-bug in the process of making its “bubble-house”. The foamy structure helps the insect hide from predators, insulate itself and stay moist. The photograph won third prize.

A spider embryo with the surface stained

Other highlights from the prize include a portrayal of the first stirrings of arachnid life by Tessa Montague at Harvard University. The surface of this spider embryo (Parasteatoda tepidariorum) is picked out in pink. The cell nuclei are blue and other cell structures are green.

The mango seed weevil

Looking for all the world like an extra from Luc Besson’s sci-fi film The Fifth Element, this magnificent mango seed weevil (Sternochetus mangiferae) earned Pia Scanlon, a researcher for the Government of Western Australia, a place among the finalists.

Edward Burtynsky: Fossil futures

An overview of The Anthropocene Project for New Scientist, 10 October 2018

THE lasting geological impact of our species is clearly visible within the galleries of this potash mine in Russia’s Ural mountains. The Urals contain one of the largest deposits in the world of this salt, one of the most widely used fertilisers. Mining has left behind vast subterranean galleries, their walls machine-carved with enormous ammonite-like whorls.

The Canadian photographer and artist Edward Burtynsky took this photograph for The Anthropocene Project, a collaborative chronicle of geologically significant human activity such as extraction, urbanisation and deforestation. Works from the project are on display at the Art Gallery of Ontario and the National Gallery of Canada, while this image and other photographs feature in Burtynsky’s exhibition The Human Signature, at London’s Flowers Gallery, to 24 November.

This September also saw the release of a documentary film, Anthropocene: The human epoch, and a book of colour photographs by Burtynsky, which includes new writing from author and poet Margaret Atwood.

Through publications, films and immersive media, Burtynksy and his Anthropocene Project collaborators – filmmakers Jennifer Baichwal and Nicholas de Pencier – convey the unsettling visual reality of resource depletion and extinction: how our planet’s surface is being scarred, ground and shovelled into abstract, almost painterly forms.

The effects of mining, in particular, are irreversible. While animal burrows reach a few metres at most, humans carve out networks that can descend several kilometres, below the reach of erosion. They are likely to survive, at least in trace form, for millions or even billions of years.

There is an eerie poetry to this: burrows found in 500-million-year-old sediment tipped off geologists to the massive diversification of animal forms known as the Cambrian explosion. Will our own gargantuan earthworks commemorate more than just a mass extinction event?

Unseen, Amsterdam: Blanket coverage

When Records Melt at Unseen Amsterdam, discussed in New Scientist, 20 September 2018

Visit the Rhône Glacier in southern Switzerland, and you are more than likely to wander past a small shop. It’s worth a visit: the owners have carved out an ice grotto, and charge tourists for the eerie and beautiful experience of exploring the inside of their glacier’s mass of blue ice.

Now, though, it’s melting. The grotto is such an important part of their livelihood, some years ago the owners invested 100,000 euros in a special thermal blanket. “It’s kept about 25 metres’ depth of ice from disappearing and has kept the grotto in business,” explains the photographer Simon Norfolk. But a few winters on the mountain have left the blanket in tatters.

“It’s the gesture that fascinates me,” says Norfolk. “There is something insane about trying to reverse the inevitable – a gesture as forlorn and doomed as the glacier itself.”

Norfolk and fellow photographer Klaus Thymann climbed up to the grotto just before dawn, armed with a light attached to a helium balloon that cast a sepulchral light over the scene. “I wanted to recreate the same light you get over a mortuary slab,” Norfolk says.

Emilia van Lynden, artistic director of Unseen Amsterdam, finds the effect as aesthetically chilling as it is beautiful. Of the whole series, called Shroud, she observes: “We’re seeing a glacier being wrapped and prepared for death.”

“There’s next to no photo-journalism here,” van Lynden explains. “None of the images here expect you to take them at face value. They expect you to pay attention and figure things out for yourself. These are works into which you need to invest a little bit of time and effort, to see what the artist is trying to tell you.”

On the face of it, then, the presence at Unseen of Project Pressure, Norfolk and Thymann’s campaigning environmental charity, seems odd. The whole point of the outfit, which has collaborated with the likes of NASA and the World Glacier Monitoring Service, is not just to get us to think about climate change, but to do something positive about it.

But art photography, Norfolk and Thymann believe, is a more effective communication tool than straightforward photo-journalism.

Their point is eloquently made by this 24 hour time-lapse video, created with a thermal imaging camera. By revealing the heat-properties of the scene, Norfolk and Thymann underline the different temperatures in the ice-body versus the surrounding landscape – a key indicator of climate change.

“I believe artists often make the best social and environmental investigators,” says van Lynden. “The trouble with ‘straight’ photography is it looks for stunning subjects and leaves you, well, stunned by them. Glaciers are magnificent in their natural form even as they’re melting away.”

The series exhibited in Project Pressure’s show When Records Melt take a different approach.

Among van Lynden’s favourite works are photographs by Christopher Parsons, who is better known for photographic portraits of explorers and sports personalities. Parsons won Project Pressure’s open call, and was invited on an expedition to the Himalayas. He collaborated with scientists studying alterations in the microbial life around retreating glaciers, and his photographs, while full of dread, are also accurate records of how changing weather patterns are altering the course of life in these fragile environments.

Lhotse at sundown, Nepal

Adam Broomberg and Oliver Chanarin also take an apparently left-field approach to glacier retreat that nonetheless packs a powerful emotional punch. “Their work is literally a huge photograph of a bone that was found within the Rhône glacier,” says van Lynden. “They’re looking at the glacier as a living archive that now is slowly unravelling. All this information, all this stored data, which has been locked in the ice for however many thousands of years, is being lost.”

She is in no doubt that Project Pressure’s message is clear. If you’re not convinced by one series of photographs, says van Lynden, “then you have six other projects that showcase, each in its individual manner, the irreparable damage we have done to our planet.”

The Art Machine

Skipping merrily about the Vallee de Joux for New Scientist, 30 June 2018

IT’S not often that artists presenting new work ask for the lights to be turned off, but here it makes sense. We hunker in the dark of hall 2 at the Messe Basel exhibition centre in Switzerland as tiny lights spill over the mesh sides of a large mechanical sculpture, producing tracks and spirals, and interference.

There is plenty of noise, too: HALO is essentially a gigantic bass harp, playing a score derived from raw data from the Large Hadron Collider (LHC) at CERN near Geneva. In 2015, CERN’s art programme hosted Joe Gerhardt and Ruth Jarman, who make art under the name SemiconductorHALO is the most recent work to come out of that residency.

Its construction was commissioned by Swiss watch-maker Audemars Piguet, which has championed some of the biggest names in scientifically inflected art since 2012. In partnership with Art Basel, Europe’s biggest art fair, the company has backed the strangest projects. Take Robin Meier‘s jungle-like installations, inspired by the synchronous flashes of fireflies; or Theo Jansen‘s Strandbeests – eerily lifelike and intentional automata made of recycled plastic.

This isn’t mere “sponsorship”; it’s Renaissance-style patronage. The company’s engagement with and promotion of artists extends well beyond the launch of any individual artwork.

Once HALO has stopped reverberating, Jarman talks about how Semiconductor got started 20 years ago. “We were interested in matter, and how science provides us with the tools to perceive matter and material processes that would otherwise be hidden from us,” she says.

Acts of perception matter to artists, while scientists are more interested in the information those perceptions contain. HALO came about, Gerhardt recalls, through the artists’ desire to work with readings that were as close to natural perception as possible, before all the artefacts and noise are stripped away. “We spent three months working through the hierarchy – fighting our way to the vault, if you like,” he says.

It’s a point not lost on Olivier Audemars, HALO‘s patron. Although neither he nor his colleagues are directly involved in the commissioning process, he is as fascinated with science as with the art his company supports. The first scientists took their measures and concepts of time from the watch-makers, he explains the day after HALO‘s unveiling. “The greatest names in science used this analogy of the watch-maker to explain their vision of the universe, including Einstein of course, with his claim that God does not play dice with the universe,” Audemars says. “Though in that case,” he smiles, “it seems he was wrong.”

Courtesy-of-the-artist-and-Audemars-Piguet--(30)

Technical and scientific interests drive a company like his, and shape its culture. “If I have an interest in cosmology and quantum physics, it’s because I’ve had those conversations, with my parents, even my grandparents.”

The artists who win commissions are invited to the company’s headquarters in the Swiss town of Le Brassus, and seem to fall quickly under their patron’s spell. Art history is not short of examples of this sort of arrangement going horribly wrong. But then, not every patron is a watch-maker, whose employees must couple art and science, mechanism and craft.

Jansen’s Strandbeests (on show this week in Singapore) are mechanism personified. Meier’s fields of artificial fireflies (last seen earlier this year in Thailand) are governed by how neighbouring pendulums synchronise. And HALO is a homage to the LHC – the largest machine in history – and a homage made mostly of one-off, handcrafted parts. The fact that on maps the LHC resembles a giant watch is, surely, just a coincidence.

At this year’s Art Basel, the walls of the Audemars Piguet collectors’ lounge displayed recent works by the Italian-born, London-based artist Davide Quayola. The company invited Quayola, whose work uses new technologies in unfamiliar ways, to take pictures around Le Brassus. The upshot was Remains – outsize, phenomenally high-resolution images of dense woodland, generated by laser scanning.

Quayola says that he wanted to look at the valley, not with his own eyes, but through the eyes of a machine. He goes on: “I wanted to hand over to the machine the traditional activity of walking out into the landscape in search of an encounter with nature. For me, technology is not a tool. I prefer to think of it as a collaborator, engaging with things in ways unique to itself.”

It is a collaboration of equals, although initially the machines had the upper hand. “Scanning the valley using lidar technology was much more complicated than I had expected,” Quayola admits.

First there was the sheer amount of time required, with each scan taking some 10 minutes as the “camera” turns full circle, shooting out tens of millions of laser beams. And then there are the readings it gathers, which only make sense from one vantage point. To really capture the environment can take up to 60 scans for a single patch of forest. There’s a final complication: all those scans must be correctly linked to yield a coherent map of an area constantly being buffeted by the weather.

The resulting images are clearly not photographs, but equally clearly are not the product of the human eye. Get up close to this cloud of points and you can distinguish each constituent; the image can not only be seen, but read. Parallel rays spill from a clump of foliage, an artefact of an uncorrected optical occlusion. And a dark, knotted surface turns out to be built up from strangely wobbly rows and columns of dots representing “thin” data, revealing the raw back-and-forth of the scanning process.

From an ordinary distance, what is startling about these works is the total absence of lines in an image that is so obviously detailed. The lidar eye has no interest in edges and planes, yet it is “seeing” with an acuity we immediately recognise as close to, or even better than, our own.

Quayola, of course, did much more than set his machines running. Since laser scanning results in a vast Excel spreadsheet, he used a computer to render the data as point clouds and then spent a while moving through them digitally, selecting the angles and frames he wanted to work on. It’s an odd process – “like being a traditional photographer, stranded somehow in a purely digital realm”, he says.

Audemars Piguet does not own what it commissions.”The work belongs to the artist,” says Audemars. “That way, the project can continue to grow.” HALO, for instance, is getting a more flexible tuning mechanism, while camera drones are contributing to the next version of Remains. “We can’t predict the life course of these projects, and we wouldn’t want to,” he says. “Artists give us new ways of seeing the world. If that process is out of our hands, good. Why would we want to spoil the surprise?”

The genius of making a little go a long way

Visiting Illuminating India at London’s Science Museum for New Scientist, 10 October 2017

One can taste the boosterism in the air at London’s Science Museum as it introduces its two-gallery exhibition, Illuminating India.

There is a cafe serving excellent Indian street food. Someone next to me used the word “Commonwealth” without irony. Would there have been such a spirit without Brexit? Probably not: this is a show about the genius of another country that very much wants to project Britain’s own global aspirations. Any historian of Anglo-British relations will give a sardonic smile at this.

When you visit (and you should), try to look around the smaller, artefacts-driven gallery first.

This room tells the stories of Indian science – stories plural because there can never be one, linear account of how such dissimilar and contesting cultures struggled and more or less succeeded in understanding and exploiting a space of such extraordinary complexity.

Naturally, since India has a past to boast of, pride of place goes to its indigenous cultures. It was the Indus valley civilisation, after all, whose peoples fashioned standardised weights around 4000 years ago: items that indicate high levels of arithmetical literacy, communication and trade.

And there are reconstructions of Ayurvedic surgical instruments described in records dating back to around 500 BC. Also on show is a 1800-year-old document containing the first example of the use of zero. Wonderfully, radiocarbon dating pushed the document’s age back by 500 years just before the exhibition opened.

It is a measure of the wisdom of the curators that such an illustrious past isn’t allowed to overshadow India’s more recent achievements. For example, Jagadish Chandra Bose’s early-20th-century crescograph, designed to observe plant growth at a magnification of 10,000 times, reminds us why he is often called the father of modern Indian science.

Another winning object is Chandrasekhara Raman’s spectrometer. Raman was the first Indian to win a Nobel prize, for physics, in 1930.

And what of that other great empire far to the north? Well, there is a map of George Everest’s career-defining Great Trigonometrical Survey of India – the teamwork of 70 years distilled on a single, meticulously drawn map. And nearby are details of a recent collaboration between Surrey Satellite Technology in the UK and the Indian Space Research Organisation on the Earth-surveying NovaSAR satellite.

Some of the deeper, darker questions about Anglo-Indian relations are posed in the second, photographic half of the exhibition.

There, the anthropometric photographs of Maurice Portman make a depressingly silly impression next to the respectful, revealing and entirely unlicentious photographs Ram Singh took of the women of his own harem: powerful political players all, who shaped the country through marriage and allied treaties.

It is hard to say why the split nature of Illuminating India works as well as it does. It has something to do with the way the rooms handle political power.

India’s science, from its ancient stepwells that gathered monsoon waters to the bureaucratic and algorithmic marvel that is today’s tiffin tin-based lunch delivery system, has been driven by the complex needs of a massive population making a living.

Similarly, its doing-more-with-less style of innovation is reflected in everything from the world’s cheapest artificial leg (the Jaipur leg, made of rubber, plastic and wood) to the world’s cheapest Mars-orbiting camera.

Visitors to Illuminating India will leave thinking that technology may, after all, be making the world a better place, and that what people do is ultimately more influential than who they are.

Marine life is rubbish

“The aim of my work is to create a visually attractive image that draws the viewer in, then shocks them with what is represented,” artist Mandy Barker explains. “This contradiction between beauty and fact is intended to make people question how their shoe, computer, or ink cartridge ended up in the sea.”

A short feature for New Scientist, 22 April 2017

How to fix a shadow

fox-talbot

HE WAS a man of some accomplishments, but drawing eluded him. So while on honeymoon in Italy in 1833, William Henry Fox Talbot adopted the camera lucida, a tracing device, to help him sketch scenes. “The idea occurred to me,” he later wrote, “how charming it would be if it were possible to cause these natural images to imprint themselves durably, and remain fixed upon the paper.”
for New Scientist, 9 April 2016

The past is like Baltimore: there is no there there

mg22630152.400-1_1200

THE past can’t be re-experienced. It leaves only traces and artefacts, which we constantly shuffle, sort, discard and recover, in an obsessive effort to recall where we have come from.

In this New Scientist review (4 April 2015), I got to write about how we invent the past. Highlights include a crying Indian and the biggest nuclear disaster you’ve never heard of.