“The English expedition of 1919 is to blame for this whole misery”

‘The English expedition of 1919 is ultimately to blame for this whole misery, by which the general masses seized possession of me,’ Einstein once remarked. Charlie Chaplin understood his appeal: ‘They cheer me because they all understand me,’ he remarked, accompanying the theoretical physicist to a film premiere, ‘and they cheer you because no one understands you.’

Four books to celebrate the centenary of  Eddington’s 1919 eclipse observations. For The Spectator, 11 May 2019.

 

Implausible science and ambiguous art

The point — that the physicists working at CERN’s Large Hadron Collider in Geneva might be constructing the very quantum reality they were hired to study — is lost on none of the 10,000-odd scientists and engineers involved with the project. And this awareness — that the very idea of science is up for grabs here — may explain why CERN’s scientists have taken so warmly to the artists dropped in their midst.

Visiting Broken Symmetries at FACT, Liverpool for the Financial Times, 30 November 2018

 

 

The physics of dance

Visiting a rehearsal of 8 Minutes, Alexander Whitley’s Sadler’s Wells main-stage debut, for New Scientist, 17 June 2017

IN A basement studio in south London, seven dancers are interpreting some recent solar research from the Rutherford Appleton Laboratory in Oxfordshire. They are tackling the electromagnetic properties of the sun’s surface, and have got themselves, literally, into a knot. “Something about your grip here is stopping her moving,” frets choreographer Alexander Whitley. “Can we get his hips to go the other way?”

Bit by bit, a roiling form emerges. Imagine a chain, folded in on itself, stretching and reforming. Its movements are coherent and precise, but wildly asymmetrical. This is no tidy, courtly dance. At one point the chain abruptly unwinds. The relief is palpable as the dancers exploit their few seconds of freedom. Very quickly, the chain kinks and folds in on itself again: a folding problem intensely claustrophobic to watch, never mind perform.

Whitley formed his dance company in 2014, and 8 Minutes will be its debut on London’s Sadler’s Wells main stage at the end of June. It is named after the time it takes for light from the sun to reach Earth. “If you imagine travelling this distance at the speed of light, and you subtract all the relativistic effects, it’s quite bizarre,” muses Hugh Mortimer, Whitley’s collaborator and a researcher at Rutherford.

Mortimer designed climate change-detecting spectrometers for the Sentinel-3 satellite, and a sea-surface temperature monitor currently operating from the Queen Mary 2 liner. He hopes to build space-based instruments that analyse the atmospheres of exoplanets. But quite another fascination drew him into collaboration with Whitley’s dance company: the way the most abstruse science can be explained through ordinary experience.

He continues his thought experiment: “For 6 minutes, you’d be sitting in darkness. By the 7th minute you would notice a point of light looming larger: that’s the Earth. You’d arrive at the moon, pass by Earth, and a few seconds later you’d pass the orbit of the moon again. And the point is, passing the moon and the Earth and the moon again a few seconds later would feel intuitively right. It would feel ordinary.”

However difficult an idea, someone, somewhere must be able to grasp it, or it’s not an “idea” in any real sense. How, then, are we to grasp concepts as alien to our day-to-day experience as electromagnetism and the speed of light? It’s a question that has cropped up before in these pages, although seldom through the medium of dance. In 1988, for example, computer scientist Tony Hey wrote about his lunch with US physicist Richard Feynman, who explained particle spin “using the belt from his trousers” (New Scientist, 30 June 1988, p 75).

As for Whitley, he says: “We grasp quite advanced concepts first and foremost through movement. That forms a semantic template for the complex thinking we develop when we acquire language. Right, left, up, down, front, back – also the idea of containment, the concept of an inside and an outside – these ideas come through our bodies.”

This is especially true in children, he argues, because they don’t yet have fully developed rational capabilities. “I think there’s strong potential for using movement to give them a different understanding of and engagement with scientific ideas,” Whitley says.

Mortimer discovered the truth of this idea for himself quite recently: “Alexander runs a creative learning project for 9 and 10-year-olds based on our collaboration. Sitting in on some sessions, I found myself thinking about solar-dynamic processes in a new and clearer way.”

Will the audience at the work’s premiere leave understanding more about the sun? From what I saw, I’m optimistic. They won’t have words, or figures, for what they’ll have seen, but they will have been afforded a glimpse into the sheer dynamism and complexity of our nearest star.

Physics of the Future by Michio Kaku

Traveling back to the future? Best carry this breathless guide to the next one hundred years. The Sunday Telegraph sent me a copy: here’s the review.

Kaku then quotes approvingly from Max Frisch that “Technology [is] the knack of so arranging the world that we don’t have to experience it”. Is the co-founder of string theory having us on?

Kaku

 

An interview with Lee Smolin

Can the future be predicted? In his book Time Reborn (2013), physicist Lee Smolin set out to show that the world is an unpredictable place, and that common-sense, Newtonian habits of thought prove seriously mistaken when applied to the great unbounded problems of our age, from economics to climate change.

In the first part of this interview, conducted for Arc magazine, Lee Smolin explains why Newtonian physics cannot be applied to the world as a whole, and why the work of Newton’s great rival, Gottfried Wilhelm Leibniz, may hold the key to a new model of the universe.

… and in the second part Smolin explores the human implications of a world where time is real and true novelty in nature is possible.